
AUTOMATED CONVERSION
CA GEN

HOW IT WORKS

modernsystems.com
MODERNIZE WITHOUT COMPROMISE.

Modernize codebases and data tier without modifying behavior. Automated Conversion
offers a 100% functionality match for model, view, and controller layers. This solution is great
for moving CA Gen apps to Java or C#, and databases to SQL Server, DB2 or Oracle.

CASE STUDIES WHITEPAPERS

VIDEO OVERVIEW

We start by using CA GEN encyclopedia as input,
not the CA GEN generated code. This ensures
the converted code is compact, clean and easy to
maintain. We offer flexibility around the deployment
configuration- whatever it is, we can automatically
convert it.

We then feed the collected input into the Extractor
Engine to convert CA Gen flows into XML files to be
used by the Modern Systems framework..

The inventory is fed into the final code generator to be
processed into native Java or C#.

Finally, the Modern Systems Code Generator produces Java or C# source and binary code for converted CA Gen procedures and
action blocks, XML files for converted CA Gen flows, source code for the Modern Systems framework, default configuration files, and
documentation. Once tested to ensure like-for-like functionality, the modernized environment is ready for deployment and the legacy
environment can be turned off.

AUTOMATED CONVERSION
CA GEN
GETTING TO THE GOAL LINE

modernsystems.com
MODERNIZE WITHOUT COMPROMISE.

The Assessment is a complete research and analysis project that outlines all mainframe application
and database refactoring candidates. Components are classified and listed in detail. Notes are
attached to components requiring special attention during the refactoring process. All application
components are inventoried, classified by language, and cross-referenced. Missing components are
collected and added to the inventory. Duplicate components residing in multiple customer repositories
are eliminated from the inventory. The assessment results in a complete understanding of the current
processing environment.

This phase also includes discussing and reviewing the overall system test strategy and the division of
the converted code into work packets.

1 Assessment

Modern Systems will define a set of topics during the assessment phase that must be addressed prior to conversion. In order to speed the
modernization process, these topics should be addressed by those team members who are best suited to understand the topic, the solution
options, and any changes or activities that are required to address the Areas of Concentration.

Once the Areas of Concentration are identified, customer teams and Modern Systems will address the areas about which they are most
knowledgeable and for which they are best suited to implement a solution. Any additional Areas of Concentration that are identified during the
course of the Project will be addressed and assigned in the same manner, to the most appropriate team.

Code Conversion2

During this phase, the entire inventory of CA GEN components supplied and scoped during the assessment is automatically converted to
functionally equivalent Java or C# code using the Modern Systems toolset. The toolset is configured to support the options selected during the
assessment. At the end of this phase, the converted code, without compilation errors, along with the supporting framework code, is packaged and
delivered to the Client for subsequent testing. The package includes:

• Java or C# source and binary code for converted CA GEN procedures and action blocks
• XML files for converted CA GEN flows, used by Modern Systems framework
• Optional: Source code and compiled DLL for generated COM proxy classes for converted CA GEN server procedures
• Optional: Source code and binaries for generated proxy classes for converted CA GEN server procedures
• Java or C# source and binary code for Modern Systems framework supporting execution of the code above, along with the documentation for it
• Default configuration files

AUTOMATED CONVERSION
CA GEN
GETTING TO THE GOAL LINE

Modern Systems tests a subset of the converted code using a test plan with documented test scenarios (test scripts) provided by the customer.
The customer will write the tests and run them on the existing system to capture and record the expected results. Modern Systems will then
run the tests against the same data on the converted system, then identify, investigate, and fix discrepancies in the expected behavior of the
modernized application. Pre-delivery testing will consist of test cases picked from all available functional test cases in order to be representative of
different parts of the applications.

Once pre-delivery testing is complete and any discrepancies in application behavior are resolved, Modern Systems performs a code refresh to
ensure that any changes that took place in the legacy application environment during the conversion process are accounted for, converted into
the target language and environment, and tested.

The Modern Systems teams work closely with our customer teams to ensure a smooth and error-free transition night or weekend. A primary
team may be onsite during the cut-over, and all other Modern Systems team members are on-call should assistance be required. Our teams also
provide any required assistance during the 90-day warranty period following the deployment.

We also offer post-application support of the modernized application, available at a fixed rate or in hourly buckets purchased as needed by the
customer.

Target State Architecture

3 Test, Refresh, Deploy

INTERNET/INTRANET

WEB CLIENT

WEB APPLICATION
SERVER

1.	 JSF Engine performs data binding, recognizes sent command

2.	 Framework sets system variables and calls business logic

3.	 Business Logic performs business actions, communicates w/database

4.	 Framework retrieves next dialogue to display according to navigation flow or transaction code

5.	 JSF Engine serializes JSF page to HTML

6.	 Web Server sends response as a new (or same) HTML page

JAVA

1.	 .NET Engine performs data binding, recognizes sent command

2.	 Framework sets system variables and calls business logic

3.	 Business Logic performs business actions, communicates w/database

4.	 Framework retrieves next dialogue to display according to navigation flow or transaction code

5.	 .NET Engine serializes ASPX page to HTML

6.	 Web Server sends response as a new (or same) HTML page

C#

modernsystems.com
MODERNIZE WITHOUT COMPROMISE.

